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Abstract-The problem of free convection heat transfer from a horizontal elliptic cylinder placed with its 
major axis vertical in a fluid of infinite extent is investigated. The investigation is based on the solution of 
the conservation equations of mass, momentum, and energy. The problem is solved for Rayleigh numbers 
ranging from IO to 1000 and for a constant value of Prandtl number (Pr = 0.7). The cylinder axis ratio 
(minor to major) varies from 0.1 to 0.964 approaching a flat plate at one end and a circular cylinder at the 
other. Results are presented for the local and average Nusselt numbers along with details of the thermal 
and velocity fields given in the form of isotherm and streamline patterns. The method of solution is 
validated by comparing results with the available theoretical and experimental data for the circular cylinder 

and the Rat plate as limiting cases. 

1. INTRODUCTION 

NATURAL convection heat transfer has gained con- 
siderable attention because of its numerous appli- 
cations in the areas of energy conservation, cooling of 
electrical and electronic components, design of solar 
collectors, heat exchangers, and many others. The 
main difficulty in solving natural convection problems 
lies in the determination of the velocity field which 
greatly influences the heat transfer process. 

The increasing interest in developing compact and 
highly efficient heat exchangers motivated researchers 
to study heat transfer from tubes of non-circular 
cross-section. Special attention was focused on tubes 

of elliptic cross-section since they were found to create 
less resistance to the cooling fluid which results in 
less pumping power. Although forced convection is 
dominant in heat exchangers, natural convection 
becomes the only mode of heat transfer in case of 
power failure. Natural convection from an inclined 
tube of circular cross-section is actually a direct appli- 
cation of the present study since the tube cross-section 
in direction of the buoyancy driven flow becomes 
elliptic in shape. Moreover, the elliptic tube geometry 
is flexible enough to approach a circular tube when 
the axis ratio approaches unity and to approach a flat 
plate when the axis ratio is very small. 

Research on natural convection from cylinders was 
mostly focused on horizontal circular cylinders. 
McAdams [I] compiled the data of natural convection 
flow over a horizontal circular cylinder obtained by a 
number of workers prior to 1952. He also recom- 
mended correlations for a wide range of Rayleigh 
number. The boundary-layer equations were solved 
by Hermann 121, employing suitable transformations, 
for the case of uniform surface temperature. Chiang 
and Kay [3], using a similar procedure, solved the 

same problem for prescribed surface temperature and 
heat flux boundary conditions. Elliot 141 studied natu- 
ral convection for two-dimensional or axisymmetric 
bodies following a sudden temperature increase. The 
study was based on a series solution at small times for 
the temperature and stream function. The theory was 
applied to a circular cylinder and the small time solu- 
tion was extrapolated to predict the steady heat trans- 
fer coefficient. The extrapolation procedure failed 
near the top of the cylinder since the boundary-layer 
approximations were invalid in that region. The boun- 
dary-layer equations were also solved by Merkin [.5] 
for the case of a horizontal isothermal cylinder. Com- 
parison with previous experimental studies indicated 

that the approach is inapplicable near the top of the 
cylinder. 

Experimental investigation of natural convection 

flow from a circular cylinder was carried out by Pera 
and Gebhart [6] who visualized the flow using granules 
of plastic and a laser light in water. They reported no 
boundary-layer separation, however, very irregular 
Bow separation and reversal occurred near the middle 
and upper part of the surface during transient flow 
periods. The inapplicability of boundary-layer 
assumptions in the region of the plume even at high 
Ra values motivated some researchers to solve the 
full conservation equations. Kuehn and Goldstein [7] 
solved the problem assuming that the fluid leaves radi- 
ally in the plume with negligible radial temperature 
gradient. The obtained results compared reasonably 
well with the experimental observations using a 
Mach-Zehnder interferometer. Farouk and Guceri 
[8] solved the same problem for the cases of non- 
uniform temperature and heat flux boundary condi- 
tions. Badr [9] solved the problem of transient natural 
convection from an isothermal circular cylinder which 
was heated either suddenly or gradually to a constant 
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NOMENCLATURE 

N, h cylinder major and minor axes U, I‘ velocities in .Y and j’ direction, respectively 

.t;, function defined in equation (IO) u:, II,, velocities in i; and r~ direction, 
F,, F,. s and r components of the body force rcspectivcly 

9 gravitational acceleration .Y. $‘ rectilinear coordinates. 
GI Grashof number, g[l(T,- T,)h’/? 

90 function defined in equation (10) Greek symbols 

I1 local heat transfer coefficient thermal diffusivity 

I; average heat transfer coefficient ; coefficient of volumetric thermal 
H,,. H,, function defined in equation (IO) expansion 
J Jacobian of transformation ; vorticity 
k thermal conductivity q, c elliptical coordinates 
1 focal distance 1’ kinematic viscosity 
L elliptic section perimeter P density 

Nu local Nusselt number 41 dimensionless temperature 

Nu average Nusselt number ti stream function. 
PY Prandtl number, r/cc 

ci rate of heat transfer per unit area Subscripts 
Rrr Rayleigh number, GI PI 0 at the surface 
t time M, at infinite distance from the surface. 

surface temperature. The Navier--Stokes and energy 
equations were solved in logarithmic polar coor- 
dinates which facilitated in virtually approaching 
infinity to satisfy the far field boundary conditions. 
Correlation studies were reported by Churchill and 

Chu [IO] and Morgan [I I]. 
Very few theoretical studies on natural convection 

from an elliptic cylinder have been published and no 
experimental work has been reported so far. Lin and 
Chao [I21 replaced the buoyancy term in the boun- 
dary-layer equations by a hypothetical outer stream 
velocity function. Series solutions were obtained for 
two-dimensional and axisymmetric bodies with cir- 
cular and elliptic cylinders as special cases. The solu- 
tion had the drawback of its inapplicability in the 
buoyant plume region. Raithby and Hollands [I31 
solved the problem of free convection from an elliptic 
cylinder with major axis vertical. A thin layer analysis 
applicable to regions in which the boundary-layer is 
much thinner than the local radius of curvature was 
modified to take into account the effect of curvature. 
For the limiting cases of elliptical cylinder (the vertical 
tlat plate and the horizontal circular cylinder), the 
average Nusselt numbers were found to be in good 
agreement with the experimental data for a wide range 
of Rayleigh numbers. Merkin [l4], using a solution 
procedure similar to ref. [5]. solved the boundary- 
layer equations for an elliptic cylinder with major axis 
either vertical or horizontal. Local and average heat 
transfer rates were calculated for the cases of either 
constant surface temperature or constant heat flux. 
The obtained results have the same drawback as dis- 
cussed previously for the case of a circular cylinder 

]51. 
The present work aims to solve the problem of 

natural convection heat transfer from an isothermally 
heated horizontal elliptical cylinder placed with its 
major axis vertical in a quiescent Boussinesq fluid of 
infinite extent. The study is based on the solution of 
the full conservation equations of mass, momentum 
and energy. The effect of cylinder axis ratio and Ray- 
leigh number on the local and average heat transfer 
coefficients arc investigated. 

2. PROBLEM STATEMENT AND GOVERNING 

EQUATIONS 

The problem considered is that of natural con- 
vection heat transfer from a horizontal cylinder of 
elliptic cross-section with a and h representing its 
major and minor axes respectively as shown in Fig. I. 
The cylinder surface has a constant temperature ?-, 
and is placed with its major axis vertical in a quiescent 
Boussinesq fluid of intinitc extent. The fluid far away 
from the cylinder surface has a constant temperature 
T,. The flow in the neighbourhood of the cylinder 
surface is driven by buoyancy forces only and is 
assumed laminar. The cylinder is assumed to be long 
enough so that the end effects can be neglected and 
the flow is considered two-dimensional. Neglecting 
viscous dissipation and radiation heat transfer effects, 
the governing equations of motion and energy can be 
expressed in Cartesian coordinates as 
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FG. I. The coordinate systems. 

where Pr (= v/n) is the Prandtl number, Ru 

(= Prgfl(T,-T,)h’/v’) is the Rayleigh number. 
i. = h/l, and J is the Jacobian of transformation 
defined as 

J = uT (cash 25 -cos 2~). (7) 

The dimensionless velocity components in the 2 and 

11 directions are related to $ by the equations 

The boundary conditions for the velocity and thermal 
fields are 

where [’ is the vorticity, $’ is the stream function, v is 
the kinematic viscosity, p is the density, F, and Fv are 
the .Y and _r components of the body force, T is the 
temperature, s( is the thermal diffusivity and t’ is the 
time. In the present problem, the body force is mainly 
due to buoyancy and accordingly 

F, = pgB(T- T,), F,. = 0 

where ,q is the gravitational acceleration and b is the 
coefficient of thermal expansion. 

For convenience, the governing equations (l)-(3) 
are written in the elliptic coordinate system ([, n) using 
the transformation 

s = lcosh <cos n, _r = lsinh 5 sin q 

where I is the focal distance and ‘1 = 0 corresponds to 
the topmost point on the cylinder surface as shown in 
Fig. 1. The resulting equations were then normalized 
by using the following dimensionless variables : 

The final equations become 

where s, and s? are defined as : 

s, = sinh5cosn and s2 = cosh<sinq 

The conditions in equation (8) are based on the no- 
slip, impermeability and isothermal conditions at the 

cylinder surface and the ambient conditions far away. 
In the present problem, the flow and thermal fields 

are symmetric about a vertical line coinciding with 
the major axis, herein after refered to as the line of 
symmetry. The following represents additional con- 
ditions along the line of symmetry 

at n = 0 and q= n. 

(9) 

3. THE METHOD OF SOLUTION 

The details of the steady velocity and thermal fields 

are obtained by studying the time-development of 
both fields when the surface temperature is suddenly 
increased from T, to T,. At the same moment, the 
fluid everywhere is at rest and has a uniform tem- 
perature T,. As a result of the surface temperature 
increase, the fluid adjacent to the cylinder is first 
heated by conduction and then starts to move upward 
driven by buoyancy force. With the increase of time, 
the velocity and thermal layers grow until eventually 
reaching a steady condition. The approach is, in prin- 
ciple, similar to that used by Badr [I51 for studying 
laminar combined convection from a horizontal cir- 
cular cylinder. Because of symmetry of the velocity 
and thermal fields about r) = 0 and following ref. [ 151, 
one can express $, [ and d, in the form 

$ = i .I;,(& t) sinnrl 
,r= I 
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FIG. 2. Comparison of average Nusselt number for different 
axis ratios with previous theoretical and experimental results 

for the case of Ru = 300. 
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4. Variation of the local Nusselt number with q for 
differmt axis ratios for the case of Rrc = 300. 

I 

where N is the number of terms in the Fourier series. ai; 
-q - n ;/;f;, = - 2;.’ 

Using the above expressions in equations (4), (5). 
and (6) results in the following set of differential equa- 
tions for the unknown functions,/;,, g,,, H, and H,,. 

x bosh 2 .(I,, - kh+ 2) +sgn(n-2kk2J1 (12) 
^ 7 
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FIG. 3. Comparison of average Nusselt number for different 
Rayleigh numbers with previous theoretical results for the 

case of h:a = 0.5. 
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FIG. 5. Variation of the local Nusselt number with 4 for 
different Rayleigh numbers for the case of h/u = 0.5. 
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(d) 
F~ti. 8. Streamline and isotherm patterns for different axis ratios for the case of Ru = 300: (a) hi ‘C I = 0.964 ; 
(b) h/u = 0.8: (c) h/u = 0.6; (d) h/a = 0.4; (e) hicr = 0.2. Streamlines plotted are $ = 0.5, 1.0. . X.0 

and isotherms plotted are 4 = 0.1. 0.2, , 0.9. 

nique. The solution procedure is the same as that used 
by Badr [17] except for the unknown terms g,,+* and 
H,,, z in equations (1 I), (12), and (14) which were first 
approximated and then corrected through an iterative 
type procedure during every time step. The conditions 
at infinity are imposed at c,,,,, = 10 which corresponds 
to a very large distance from the cylinder surface 
(about 5000 times the major axis). At the start of 
computations, the number of terms in the Fourier 
series is taken as 7 and more terms are added as 
time increases until reaching the steady state. The 
maximum number of terms used is 20 in most of 

the cases considered. The logarithmic nature of the i: 
coordinate enables us to have equal space steps in the 
discretization process while the physical space steps 
are very small near the solid boundary and large far 
away. Such discretization matches the physical 
phenomenon since the temperature and velocity gradi- 
ents are large near the solid surface and become very 
small far away. 

4. RESULTS AND DISCUSSION 

Before presenting results let us first define the local 
and average Nusselt numbers (Nu, Nu) as follows : 
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(e) 

Fm. X.-Cuntinued. 

where k is the fluid thermal conductivity and h and h 
are the local and average heat transfer coefficient. 
These can be obtained from 

where 4 is the rate of heat transfer per unit area and 
S,, is the direction normal to the solid surface. Using 
the same coordinate transformation, equation (I 9) 
can be expressed in a dimensionless form as 

(20) 

where Jo = I’/2 (cash 2<,-~0~217) and the term 

(WX)t=t,, can be expressed in terms of Fourier 
coefficients as 

Using the above expressions in equation (18) results 
in 

-J(2);, 

Nu = (cash 25, -cos2r/)‘= 
(21) 

The average Nusselt number may now be expressed 
as : 

Nu = i s 1. 

L 0 
NudL = - (22) 

where L is the elliptical-section perimeter. 
The effect of cylinder axis ratio on the average Nus- 

selt number is shown in Fig. 2 for a constant Rayleigh 
number of 300. The available experimental and theor- 

etical values of Nu for the two limiting cases of a 
vertical flate plate (b/a = 0) and a horizontal circular 
cylinder (h/a = 1) are also plotted on the same figure 
for comparison. The figure shows a difference of only 
5% between the values of Nu obtained in this work 
for a thin elliptic cylinder of axis ratio 0.1 and the 
flat plate experimental results of Saunders [l8]. The 
deviation from McAdams correlation is found to be 
3.8% and a difference of 6.3% is found when com- 
paring with the correlation of Churchill and Chu [ 191. 
Such differences are quite acceptable considering the 
variations amongst various experimental results and 
correlations themselves. However, a large difference 
is found when comparing with the flat plate numerical 

results obtained by Suraino and Yang [20]. This large 
difference is believed to be due to the imposition of 
the far field boundary conditions in ref. [19] at a 
distance of only 2-3 times the plate length which 
greatly affected the flow behavior. 

At the other end, when the elliptic cylinder geo- 
metry approaches a circular cylinder (h/a = 0.964), 
a difference of 2% is found when comparing with 

the correlation of McAdams [l] and almost the 
same difference with Morgan [I I] while a difference 
of 15% is found when comparing with the correlation 
of Churchill and Chu [lo]. The large difference 
in the later may be attributed to the use of a single 
correlation for a wide range of Ra. 

The effect of Ra on the average Nusselt number for 
a fixed cylinder geometry (h/a = 0.5) is presented in 
Fig. 3 together with the conduction thickness cor- 
relation results of Raithby and Hollands [ 131 and the 
boundary-layer results obtained by Merkin [14]. The 
difference between the present results and the con- 
duction thickness solution varies from 4 to 15% as the 
Rayleigh number increases from IO to 1000. However, 
the difference between the present results and those 
obtained by Merkin [14] are unsurprisingly higher 
since the range of Ra considered in this work is far 
away from the range of applicability of any boundary- 
layer solution. 

The effect of axis ratio on the local Nusselt number 
variation along the cylinder surface for a fixed value 
of Ra can be seen in Fig. 4. For the case of an axis 
ratio close to that of a circular cylinder (h/u = 0.964). 
the local value of Nu is highest at the forward stag- 
nation point and decreases to a minimum at the rear- 
most point. The trend changes as the cylinder gets 
thinner. For axis ratios of 0.4 and below, the minimum 
value of Nu occurs between ye = 40 and 60 as shown 
in Fig. 4. Although the average Nusselt numbers 
change only very slightly from b/a = 0 to h/u = 1 (Fig. 
2), the local Nusselt number distributions (Fig. 4) are 
very different. The effect of Rayleigh number on the 
local Nusselt number distribution is shown in Fig. 5 
for a fixed axis ratio of 0.5. The figure shows that 
for very small Ra values (Ru = 0.01) the local Nu 
distribution is almost symmetric about ‘1 = 90 with 
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FIG. 9. Streamline and isotherm patterns for different Rayleigh numbers for the case of /VU = 0.5: (a) 
,Q = 100; (b) & _ 300: (c) & = 500; (d) RU = 700: (e) Rrr = 1000. Streamlines and isotherms plotted 

are the same as in Fig. 8. 

maximum values at both forward and backward stag- 
nation points indicating a dominant conduction 
regime. The effect of increasing Ra is simply to 
increase the value of Nu over the entire cylinder sur- 
face with a larger increase at the forward stagnation 
point than at the rearward point. This shows that 
convection becomes more dominant with the increase 
of Ra. 

The vorticity variation over the cylinder surface is 
shown in Fig. 6 for a Rayleigh number of 300 and 
different axis ratios. For an axis ratio of 0.964, the 
vorticity distribution is almost symmetric about 

11 = 90’ and has its peak there. However, the asym- 
metry grows with the decrease of h/u and the 
maxjmum vorticity point shifts towards v = 0’ with 
another peak near q = IX@‘. As the cylinder gets thinner, 
the surface vorticity reaches very high values near 
q = 0” and ISO” but with no flow separation anywhere 
on the surface in all cases. The effect of increasing 
Ra on the surface vorticity is presented in Fig 7 
for an axis ratio of 0.5. At very small values of Ra, 
the surface vorticity is small and almost symmetric 
about q = 90” (similar to the local Nu distribution). 
With the increase of fin the vorticity increases over 
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FIG. 9.-Continued. 

the entire cylinder surface and it no longer remains 
symmetric. 

The effect of axis ratio on the isotherm and stream- 
line patterns for the case of Ra = 300 when 
h/a = 0.964, 0.8, 0.6, 0.4, and 0.2 is shown in Fig. 8. 
Since the vefocity and thermal fields are symmetric 
about the line q = O’, only one half of the field is 
plotted. The figure shows that the isotherms get closer 
to the body surface as the cylinder gets thinner. For 
the case of b/a = 0.964, the isotherm pattern (Fig. 
8(a)) indicates a maximum temperature gradient at 
the bottom of the body (n = 180”) and a minimum at 
the top (II = 0”). However, for smaller axis ratios the 
temperature gradient possesses two peaks, one at the 
top of the body and the other at the bottom. The 
streamline patterns show that the fluid is accelerating 
from a low velocity region below the cylinder to a 
high velocity region above it. This is quite expected as 
a result of the buoyancy forces. 

The isotherm and streamline patterns for Rayleigh 
numbers of 100,300,.500,700, 1000 when the cylinder 
axis ratio is 0.5 are plotted in Fig. 9. The figure shows 
higher stream velocities in the entire flow domain as 
Ra increases. The isotherm patterns show that the 
thermal layer gets thinner indicating higher tem- 
perature gradient as Ra increases. 

5. CONCLUSIONS 

The problem of free convection heat transfer from 
an isothermal elliptic cylinder is studied in the range 
IO < Ra < 1000 for axis ratios between 0.1 and 0.964. 
The method of solution is verified by comparing the 
average Nusselt number results with the available 
theoretical and experimental data for the circular 

cylinder and flat plate as two limiting cases and a good 
agreement is found. For a constant Rayleigh number, 

the average Nusselt number is found to increase with 
the decrease of the axis ratio approaching its 
maximum when the axis ratio approaches zero. The 
average and local heat transfer coefficients are also 
found to increase with the increase of Ra due to the 
increase of fiow velocity. A similar behavior is also 
found for the surface vorticity. The local Nusselt num- 
ber reaches high values at the forward and backward 
stagnation points as the cylinder gets thinner. The 
surface vorticity distribution indicated no flow sep- 
aration anywhere on the cylinder surface. The 
obtained values of the local and average Nusselt num- 
bers are believed to fill a gap in the existing knowledge 
about such problem. 
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APPENDIX 

The functions S,, Z, and Z,, used in equations (25), (27) 
and (2X) respectively, are as follows : 

c7H,,,+ 11 BH,,_ ,, 
_____ 

at a,L 

+sinhC((n+ I)H,,,+,,+(~--1)H,,,~ ,,j 1 

+A’ f I 
^ 

,?,=I 

+ ((m+,1)1;,,+,,,+Im~)2lf;,,,~~.,} 

+ n?H,,, 
i 

%,,+,,, &n, 
(:(-- +sgn(m-n)- 

(‘5 II (A.31 

where sgn (m-n) represents the sign of the term (m-n) and 

f, = sn = 0. 


